

2012 Progress Report Smart Grid Demonstration Program

Ted Wiley, Jay Whitacre

Department of Energy Peer Review 26 September, 2012

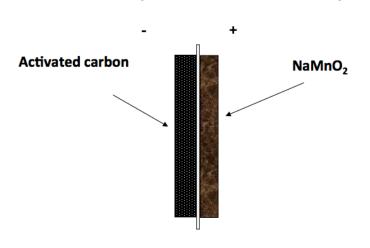
Thanks to Our Supporters

About Aquion Energy

Founded on the belief that stationary energy storage must be:

- Safe: Non-toxic and immune to catastrophic failure events
- Reliable: Long lasting and capable of operating in abusive environments
- Affordable: Made from abundant, simple materials via a scalable manufacturing process

This principle demands a new type of energy storage: Aqueous Hybrid Ion Batteries


Designed for stationary, long-duration applications

- Utilities—various grid services
- Microgrids—telco, mining, commercial/residential solar, military, island, campus, etc.

Aquion AHI Technology: Electrochemistry and Device

"Aqueous Hybrid Ion" chemistry:

- Anode is low cost activated carbon
 - Enabling low-cost surface modification developed
 - Electrochemical Double Layer Capacitor Effect + pseudocapacitance
- Cathode is λ-MnO₂
 - Alkali ion intercalation material very stable in neutral pH aqueous electrolyte
- Electrolyte is Na₂SO₄ in water (~1 M)
- Functional ions are Na, Li, and protons

Aquion AHI Technology: Electrode and Device Structure

- 1 to 4 mm thick Electrode pellets are made from a blend of active material and additives
- There are 4 pellets per electrode layer in a true prismatic electrode stack
- The electrode stacks are heat-sealed in a polypropylene package

Aquion's FOA36 Award: Goals and Milestones

Project Outcomes

- Successfully completed project ahead of schedule
- Proved selected materials could function in thick format electrodes
- Proved out a full pilot-scale production line
- Produced engineering prototype units showing indicative performance
- Created several functional systems, including a >10 kWh, 1000 V grid connected system
- Demonstrated key performance goals for the technology
- New materials examined at Carnegie Mellon University

Aquion's FOA36 Award: Performance Goals

Target	Demonstrated
>5000 Cycle Life	>5000 in prototype cells, 1200 Cycles in production style cells – testing ongoing
10 years projected calendar life	No evidence to show <10 years – testing ongoing
<10% capacity degradation	Demonstrated through a variety of tests
Low capital cost	Competitive with PbA over lifetime
>10 kWh storage unit fabricated and demonstrated to be able to give/take from grid	Achieved – with a >1000 V battery pack at Aquion Energy HQ

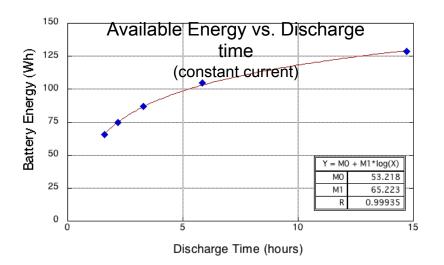
High Voltage Test System at Aquion

Pilot Line in Operation

Deliverable Performance: >10 kWh Grid-Connected Demo

Performance Overview – Cycle Stability

- >1000 cycles demonstrated on production electrodes in 1/8th size cell fixture
- >1 Year, 400 deep cycles on full size "battery 0" ubit
- Approaching 20,000 PSOC cycles on set of Battery 0 units with minimal loss in function



Pre-Production "Alpha" Unit Performance

- Units are ~7.6 V at full state of charge
- Give ~130 Wh at >15 hour discharge rates
- Efficiencies range from the low 90's to 60%, depending on state of charge and current/power load
- Cycle life data consistent with prototypes

Basic Research at Carnegie Mellon

- Funding has supported (in part) 1 Postdoctoral Scholar and two graduate students
- 2 Key projects:
 - Understanding carbon/electrolyte interactions for neutral pH energy storage devices
 - Low cost manufacturing of next generation anode materials
- Papers/Dissertations Published:
 - Wei Wu, Alex Mohamed, J.F. Whitacre, "Microwave Synthesized NaTi2(PO4)3 Anode Material for Aqueous Electrolyte Batteries: Process Routes and Performance in a Dual Intercalation Sodium-Ion Battery", Submitted, Journal of Electrochemical Society (2012)
 - J.F. Whitacre, A. Mohammad, S. Snehbag, T. Wiley, E. Weber, D. Blackwood, E. Lynch-Bell, J. Matusky, D. Humphreys, "Large-Format Asymmetric Sodium-Ion Functional Energy Storage Devices for Stationary Applications", Journal of Power Sources (2012), 213, 255-264, (2012)
 - S. Chun, J.F. Whitacre, "Relating Electrolyte Acidity and Hydrogen Uptake in Mesoporous Activated Carbons", Submitted, Electrochemistry Communications, (2012)
 - "Electrochemical Capacitors: The Evolution and Control of Physicochemical Properties during Processing" Ph.D.
 Dissertation, Sangeun Chun, Carnegie Mellon, 2011
 - S. Chun, J.F. Whitacre, "The evolution of electrochemical functionality of carbons derived from glucose during pyrolysis and activation," Electrochemica Acta, 60 pg 392-400, (2012)
 - S. Chun, Yusuf N. Picard, Jay Whtiacre, "Relating Precursor Pyrolysis Conditions and Aqueous Electrolyte Capacitive Energy Storage Properties for Activated Carbons Derived from Anhydrous Glucose-d", Journal of the Electrochemical Society, 158 (2), A83, (2011).

Key findings:

- Relationship between electrolyte species and functionality for different carbon morphologies explained
- Carbon's ability to locally store hydrogen and derive current later is maximized in intermediate pH solutions
- Very rapid microwave synthesis processes can be used to create NaTi₂(PO₄)₃ which performs well as an anode material in an AHI environment

Aquion Over Time: Product, Employment, Funding

Product Progression: Coin Cells to Stacks

2009

Coin Cell:
Demonstrated
Functional
Material
~4 mWh

2011

Engineering
Prototype:
Demonstrated
Manufacturability
~35 Wh

May 2012

Beta Product: Initial Sales

- ~1 kWh (stack)
- ~140 Wh (battery)
- * 7 battery stack (48V) will be base unit of delivery

Product Progression: Future Plans

Current beta product TRL 6

Planned modules and containers **TRL 7**

Manufacturing Progression

Automated Pilot

Manual Pilot

Lab Assembly

Hand assembled assembly line on pilot dial table

2011

Hand assembled cells, 1 cell per hour, to quantify advancements

2009

May 2012

Semi-automated

Manufacturing Progression: Future Plans

Current Operations

Pilot facility in Pittsburgh, PA ~30,000 sf

Planned 2013 Operations

AHI Battery Deployments

Off Grid Grid Demos

Grid Tied Demos

Development Systems

- 5-15kWh systems
- Sited at PGH

Residential and Portable Solar

- 2-5kWh systems
- CA, ME, FL, PA, Africa and Australia

 Collaborate with PCE Developers

AHI Battery Deployments: Future Plans

Reference Systems at Aquion Headquarters

Large Demos and First Commercial Deployments

Summary of Accomplishments Enabled by FOA 36

- Grew from one full time employee to over 100
- Raised over \$81M in Equity and Debt
- Produced 1000's of battery units for preliminary testing
- Deployed AHI energy storage systems globally
- Scaled production from lab to pilot scale
- Designed and deploying commercial scale manufacturing facility in PA
- Designed built and tested DoE final Deliverable for project:
 - > 10kWh high voltage energy storage system able to perform grid operations

